74 research outputs found

    The influence of a wall function on turbine blade heat transfer prediction

    Get PDF
    The second phase of a continuing investigation to improve the prediction of turbine blade heat transfer coefficients was completed. The present study specifically investigated how a numeric wall function in the turbulence model of a two-dimensional boundary layer code, STAN5, affected heat transfer prediction capabilities. Several sources of inaccuracy in the wall function were identified and then corrected or improved. Heat transfer coefficient predictions were then obtained using each one of the modifications to determine its effect. Results indicated that the modifications made to the wall function can significantly affect the prediction of heat transfer coefficients on turbine blades. The improvement in accuracy due the modifications is still inconclusive and is still being investigated

    Neural network architectures to analyze OPAD data

    Get PDF
    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data

    The role of the turbulent Prandtl number in turbine blade heat transfer prediction

    Get PDF
    Improvement of the prediction of external (gas-to-blade) heat transfer coefficients in gas turbine engines was undertaken. The effects of improved eddy diffusivity of heat modeling in the turbulence model was specifically investigated. A two-dimensional boundary STAN5, was selected and modified by incorporating several different turbulent Prandtl number models. Results indicated that slight effects were attributable to the modified turbulence model. Boundary layer character appeared to be much more significant

    Using neural networks to assist in OPAD data analysis

    Get PDF
    The space shuttle main engine (SSME) became the subject of plume emission spectroscopy in 1986 when researchers from NASA-Marshall Space Flight Center (MSFC), Arnold Engineering Development Center (AEDC), and Rocketdyne went to the SSME test stands at the NASA-Stennis Space Center and at Rocketdyne's Santa Susan Field Laboratory to optically observe the plume. Since then, plume spectral acquisitions have recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to promote the Optical Plume Anomaly Detection (OPAD) program with a goal of instrumenting all SSME test stands with customized spectrometer systems. A prototype OPAD system is now installed on the SSME Technology Test Bed (TTB) at MSFC. The OPAD system instrumentation consists of a broad-band, optical multiple-channel analyzer (OMA) and a narrow-band device called a polychrometer. The OMA is a high-resolution (1.5-2.0 Angstroms) 'super-spectrometer' covering the near-ultraviolet to near-infrared waveband (2800-7400 Angstroms), providing two scans per second. The polychrometer consists of sixteen narrow-band radiometers: fourteen monitoring discrete wavelengths of health and condition monitoring elements and two dedicated to monitoring background emissions. All sixteen channels are capable of providing 500 samples per second. To date, the prototype OPAD system has been used during 43 SSME firings on the TTB, collecting well over 250 megabytes of plume spectral data. One goal of OPAD data analysis is to determine interatively with the help of a computer code, SPECTRA4, developed at AEDC. Experience has shown that iteration with SPECTRA4 is an incredibly labor intensive task and not one to be performed by band. What is really needed is the 'inverse' of SPECTRA4 but the mathematical model for this inverse mapping is tenuous at best. However, the robustness of PSECTRA4 run in the 'forward' direction means that accurate input/output mappings can be obtained. If the mappings were inverted (i.e., input becomes output and output becomes input) then an 'inverse' of SPECTRA4 would be at hand but the 'model' would be specific to the data utilized and would in no way be general. Building a generalized model based upon known input/output mappings while ignoring the details of the governing physical model is possible through the use of a neural network. The research investigation described involves the development of a neural network to provide a generalized 'inverse' of SPECTRA4. The objectives of the research were to design an appropriate neural network architecture, train the network, and then evaluate its performance

    Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    Get PDF
    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors

    Comparing inpatient management of chronic pelvic pain flares before and after the COVID-19 pandemic

    Get PDF
    Patients with chronic pelvic pain (CPP) may experience pain exacerbations requiring hospital admissions. Due to the effects of backlogged elective surgeries and outpatient gynaecology appointments resulting from the COVID-19 pandemic, we hypothesised that there would be an increased number of women admitted with CPP flares. We conducted a retrospective review of all acute gynaecology admissions at the Royal Infirmary of Edinburgh from July to December 2018 (pre-COVID) and 2021 (post-COVID lockdown). We collected information on the proportion of emergency admissions due to CPP, inpatient investigations and subsequent management. Average total indicative hospital inpatient costs for women with CPP were calculated using NHS National Cost Collection data guidance. There was no significant difference in the number of emergency admissions due to pelvic pain before (153/507) and after (160/461) the COVID-19 pandemic. As high as 33 and 31% had a background history of CPP, respectively. Across both timepoints, investigations in women with CPP had low diagnostic yield: <25% had abnormal imaging findings and 0% had positive vaginal swab cultures. Women with CPP received significantly more inpatient morphine, pain team reviews and were more likely to be discharged with strong opioids. Total yearly inpatient costs were £170,104 and £179,156 in 2018 and 2021, respectively. Overall, emergency admission rates for managing CPP flares was similar before and after the COVID-19 pandemic. Inpatient resource use for women with CPP remains high, investigations have low diagnostic yield and frequent instigation of opiates on discharge may risk dependence. Improved community care of CPP is needed to reduce emergency gynaecology resource utilisation

    Galaxy Zoo: CANDELS barred discs and bar fractions

    Get PDF
    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    corecore